Q: WHAT IS TUNGSTEN CARBIDE?

a: an effective solution for

     difficult wear PROBLEMs

 

HOW IS IT MADE?

1

2

3

Described as powder-metallurgy, the manufacturing process begins with a mix of fine tungsten and cobalt powders.  Carbide wear, impact and corrosion properties can be adjusted by varying the tungsten particle size, binder or adding additional alloying agents.

Next the powder is compacted in a die to form a specific size and shape. These are called blanks. During this process, the blanks are the consistency of dense chalk but are still soft and can be machined. Rectangles, cylinders, and round bars are common shapes pressed in these dies.

Using pressure and heat, the blank is processed in a high-temperature sintering furnace. After this step, the blank has become cemented tungsten carbide, and now have the high hardness and wear-resistant characteristics.

MIXED + PRESSED + SINTERED =

CARBIDE

4

After the sintering process, carbide pieces are ready to be installed in high wear and impact situations! Carbide can be brazed, glued or mechanically held in place to extend part wear life.

IMPACT STRENGTH

Repeated high energy impacts can make steel parts deteriorate more rapidly.  Carbide has high impact strength and can resist wear and impact applications for far longer than ceramic or steel. This results in fewer repairs and replacement parts and lower operating cost.

Carbide hardness can be almost as hard as diamond and harder than tool steel. High hardness results in greater wear resistance in abrasive applications. Carbide wear parts last longer.

HARDNESS

Mouse over image to reveal chart

HELPING PARTS PERFORM

Wear, impact, corrosion, and heat all affect the life and efficiency of wear parts. Carbide has many features that help parts perform more effectively by resisting wear and extending work life.

Carbide can perform reliably at temperatures where other materials would begin to soften. As steel heats up, it begins to anneal and lose hardness thus decreasing wear resistance. Tungsten does not anneal and can be used in environments with temperatures approaching 1000 F.

HEAT RESISTANT

Certain carbide grades have special binders with nickel and chrome to increase corrosion resistance. Carbide grades can have corrosion resistance to handle environments with acetone, ethanol, gasoline, ammonia, most bases, weak acids, tap water and other organic solvents.

CORROSION EFFECTS

Steel parts that experience extreme abrasion do not last as long as carbide wear parts. In most instances, carbide will out wear typical steel by a factor of 25 to 1 or more!

WEAR RESISTANCE

Carbide

Steel

perfect for ALL wear solutions

HOW CAN TUNGSTEN CARBIDE AND

GOOD EARTH TOOLS HELP YOU?

INCREASED PRODUCTIVITY,

REDUCED DOWNTIME

We are pioneers in the engineering and application of carbide for industrial wear parts. We develop and produce wear solutions for industries ranging from material handling, ground-engaging wear parts, power generation, mining, mineral processing, oil and gas, railroad maintenance, and pet food production to name a few.

FANS

SKIDS

SCREENS

HAMMERS

CENTRIFUGE

WEAR PLATES

 

Give us a call or email us to see how carbide can go to work helping your company reduce downtime and increase productivity.

we believe in

BUILDING FOUNDATIONS that last

“The high wear performance of Good Earth Tool’s tungsten carbide application to our industrial fans are definitely producing less downtime and improve productivity.”

Testimonial from a valued GET customer

Submitting Form...

The server encountered an error.

Form received.

let's talk

4 Industrial Drive | Crystal City, MO 63019 USA | Phone: 636.937.3330 | Fax: 636.937.3386